PLUTONIUM IN SOIL NORTHEAST OF THE NEVADA TEST SITE

E. Hardy (HASL)

LESTRACT

Analyses of soil collected at 31 locations northeast of the Nevada Test Site (NTS) as far as south central Idaho, southwestern Wyoming and eastern Utah show higher plutonium levels than expected from global fallout alone. The presence of a second source of plutonium was demonstrated by mass spectrometry, and its crigin identified as the NTS. Resolution of the plutonium fallout leads to an uneven dispersion for NTS derived debris. This reinforces the conclusion that safety tests and other detonations which resulted in incomplete fission, conducted from 1956 through 1958, created individual deposition patterns dictated by the wind trajectories at shot time.

INTRODUCTION

ĭ

Over a period of 14 years (1957-1971, the annual fallout rates of Sr-90 in New York City and Salt Lake City were very similar despite to two and one-half fold difference in mean annual precipitation. Because of the drier climate in Salt Lake City, a proportionately lower fallower f

The accumulated deposit was measured at 13 sites in north central and southeast Utah in 1971 by analyzing soil samples (1). Although the deposited amount was not uniform because of differences in climat and topograpy, there was a clear pattern of higher deposition per unj

of the United States. We showed that the fallout from 1957-1971 in New York City and Salt Lake City must have originated from the same global source - the stratosphere. It was reasonable to hypothesize that the Salt Lake City area is a preferential region for direct intrusion of stratospheric air into the troposphere. Prior to 1957, the accumulated Sr-90 deposit in Salt Lake City was 10 - 15 mCi per km² higher than in New York-City which implied that Salt Lake City must have received fallout from another source, presumably the Nevada Test Site.

Subsequently, the 13 soil samples collected in 1971 were analyzed for Pu-239-240 and Pu-238 and it was surprising to find higher plutonium levels than predicted from the Sr-90 fallout. By comparing the Pu-239-240 to Sr-90 activity ratios of the Utah soils with the average ratio of thirty-two northern hemisphere soils collected in 1970-71 and containing only global fallout, we estimated that up to 60 percent of the total Pu-239-240 activity deposited at some Utah sites represented a source other than the stratospheric reservoir (2) Soil samples taken at the University of Utah from 1959 through 1971 revealed that the excess plutonium must have been delivered prior to 1959. Mass isotopic analyses indicated that the Nevada Test Site was the probable second source and that twice the level expected from

surmised that this plutonium from NTS was predominantly from some of the tests in which plutonium was physically dispersed by high explosives or tests in which little fission occurred.

Since the two reports summarized above were published, two further steps have been taken to determine the extent and distribution of the off-site plutonium contamination from the NTS:

(1) during June 1974 soil was sampled at 13 additional sites in Utah, Nevada, Wyoming and Idaho and analyzed for plutonium, and

(2) the plutonium fractions representing all sites sampled in 1971 and 1974 were subjected to mass isotope spectrometry as a means of distinguishing the two sources of debris. This report brings together all the data associated with the two sampling efforts.

METHODS

The 1971 and 1974 soil sampling sites are identified in Table 1. Included are values for the mean annual precipitation (3) and altitude. The sites are mapped in Figure 1 where the numbers correspond to those in the first column of Table 1.

The 1971 samples were taken by the core method (4a) to a depth of 30 cm, while both the template (4b) and the core techniques were used to sample to a depth of 15 cm in 1974. Data on depth distributions, acquired following the 1971 sampling, indicated that over

SOIL SAMPLING SITES FOR PLUTONIUM DEPOSITION

Map Site	Location	Site	Mean ann.	Altitude
No.	<u> </u>	OICE	precip. (cm)	- (111)
	Sites S	Sampled in June 1971		
	(map location	n designated by <u>open</u> circle)		•
	770	While Chales Ward but		
1	Provo, UT	Utah State Hospital	•34	1400
2	Salt Lake City, UT	Liberty Park Univ. of Utah	39	1310
3 4	Salt Lake City, UT Ogden, UT	Cache NF	41 53	1460
5	Brigham, UT	Tabernacle	46	1590
6	Heber, UT	Tabernacle	39	1370
7	Marion, UT	Cemetery	51	1710
8	Wanship, UT	Rockport Lake Pk.	7.1 42	2010
9	Henefer, UT	private meadow	38	1860
10	Uinta Mtns, Ut	Trial Lake area	76	1680
11	Moab, UT	BLM area	20	2900
12	Manti Lasal NF, UT		81	1620 2900
13		Lasal Guard Station	41	2360
٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	Haller Lasar Nr, Cr	nasar Guard Deacton	47	2260
			•	
	Sites S	Sampled in June 1974	•	• *
		on designated by black dot)	• • • • • • • • • • • • • • • • • • • •	
			•	
: 1	Tybo, NV.	grazing land	<20	1620
2	Cherry Creek, NV	Humboldt NF, Quinn Canyon	33	2440
		Range		•
3	Timber Mtn.Pass, MV	Black Cliff area	<20	1710
4	Panaca, NV	grazing land	<20	1460
5	St.George, UT	Dixie NF, Cottonwood Canyon	25	1650
6	Panguitch, UT	Dixie NF, Panguitch Lake	41	2200
7	W.Milford, UT	W.of Frisco Pass & E. of	<20	1460
-		Wah Wah Valley		
8	Baker, NV	F. Baker ranch	20	1590
9	Ely, NV	city pasture	27	1950
10	Eureka, NV	grazing land	30	1770
11	Elko, NV	grazing land	23	1650
12	Wendover, NV	West of salt flat	13	1370
13	Veron-Eureka, UT	mountain meadow	38	1830
14	Wales, UT	mountain meadow	41	2380
15	Vernal, UT	meadow	20	1830
16	Robertson, WY	meadow	36	2380
17	Cache NF, UT	Bear River Range, Tony	71	2230
_		Grove. R.S.		
18	Twin Falls, ID	Old County Hospital	23	1070
	· · · · · · · · · · · · · · · · · · ·			

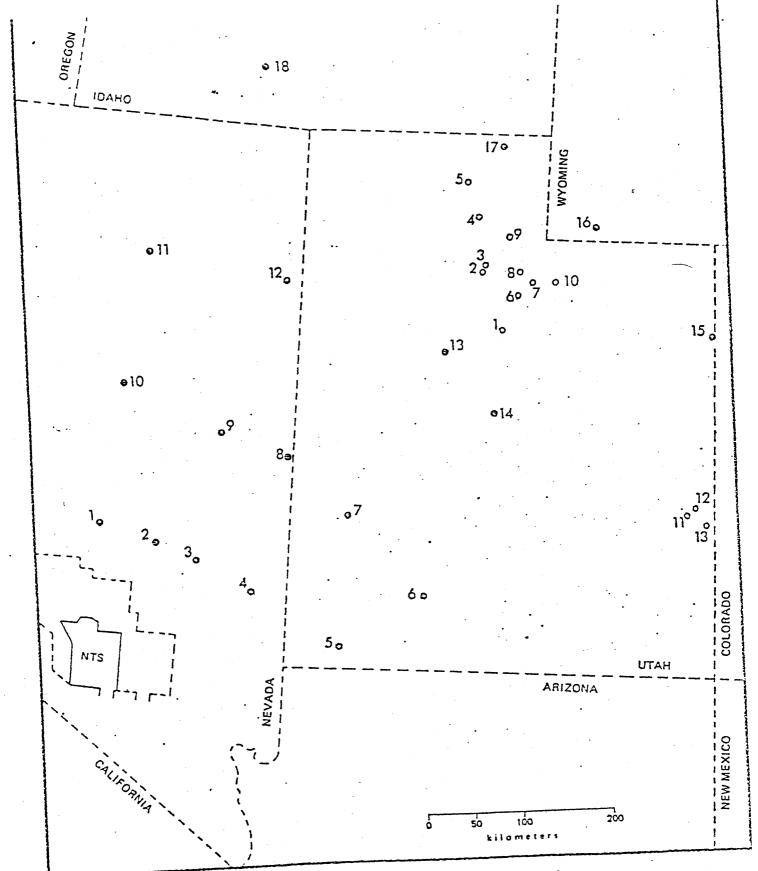


FIG. 1 SOIL SAMPLING SITES: open circles, 1971 samples dots, 1974 "

The sampling method depends upon the soil type and moisture content.

The template was used in those situations where a soil core would not hold together.

The 1974 sampling sites were selected from an area defined by the composite trajectory of the winds which existed at the deconation times of 12 safety experiments at NTS. A total of 26 safety tests were carried out at NTS from 1956 through 1953 (5).

As far as could be ascertained, the sites represented undisturbed soil for a period of 20 years. Contacts were made with Forest Service and Soil Conservation personnel who were familiar with the general areas and suggested sites where undisturbed soil could be found.

The soils were prepared for analysis at HASL by drying, crushing, and blending. A five kilogram portion was pulverized (4c). Kilogram aliquots of all the soils were acid extracted. In addition, one hundred gram aliquots of the 1974 soils were analyzed. Ten and one hundred gram aliquots of some of the samples were completely solubilized to compare with the acid extractions. Plutonium was chemically separated and purified by the HASL procedure (6). After electrodeposition on platinum and alpha counting with a silicon barrier detector, the plutonium fractions were isotopically

Radiochemical analyses were carried out at HASL. Teledyne-Isotopes (Palo Alto) and LFE Environmental Analysis Laboratories. Mass spectrometry was performed at Knolls Atomic Power Laboratory, McClellan Central Laboratory and Lawrence Livermore Laboratory.

Aliquots of all the soils were non-destructively analyzed for Cs-137 at HASL by lithium-drifted germanium diode spectrometry (4d).

RESULTS

Single values or averages of replicate analyses for Cs-137, Pu-239,240, and Pu-238 are given in Table 2. Error terms represent one standard deviation due to counting in the case of a single analysis and one standard deviation about the mean in the case of replicate analyses. The activity ratios, Pu-239,240 to Cs-137 and Pu-238 to Pu-239,240 are listed in the table for future reference and the mass ratio, Pu-240 to Pu-239 is given in the last column. Table A in the Appendix provides the individual analytical results for these samples including mass ratios involving Pu-241 and Pu-242.

Some of the Pu-239.240 values in Table 2 show a rather large spread about the mean of replicate analyses, and in one case the error term is close to 50 percent. Our previous experience with

June 1971 Sampling (Sampling Depth 0-10 cm)

							No.		alyses			Maun 1 S
, p				_	Ci per km²			233	<u>u</u>	Activity Pu-239, 240	Patios Pu-238	
:•	MASC No.	Location	Site		ru-239-240	20-238	Çs		238	Cs-137	Pu-239, 240	P
1	S1718	Provo, VI	institution lawn	140+8	6.010.3	0.1410.01	1	2	1	0.041±0.003	0.024±0.002	0.072
7	s1715	Salt Lake C VT	Liberty Park	140+8	4.110.1	0.1110.01		1	1	0.02210.002	0.027+0.002	0.639
3	51711	Salt Lake C., UT	Univ. golf	170±7	4.9±0.2	0.17±0.91	1	2	1		0.035±0.072	0,093
3			course									
	51713		duplicate sampl.	15018	5.5±0.3	0.16±0.01	1	.5	1,	0.037±0.003	0.029±0.032	0.085
4	51712	Ogden, UT	mountain meadow	240±12	5.5±0.1	0.2010.01	1.	1	1	0.02310.001	0.03640.002	0.117
5	\$1709	Brigham, UT	Tabernaclo la-n	150±8	2.9±0.3	0.14±0.01	1	1	1	0.01910.002	0.043±0.006	0.135
6	51721	Haber, UT	Tabernacle lawn	100±6	3.0±0.1 ·	0.09±0.01	1	1	1	0.03040.002	0.031±0.003	0.099
7	S1716	Marion, UT	cematery	190±7	4.6±0.1	0.15±0.01	. 1	1	1	0.026±0.001	0.033±0.002	0.101
8	51719	Wanship, UT	zeadow	150±9	2.9±0.1	0.12±0.01	1	1	1	0.019±0.001	0.041±0.00±	0.127
9	51720	Henefer, UT	neadow -	15015	2.9±0.1	0.12±0.01	1	1	1	0.019±0.001	0.041±0.004	0.132
o	S1710	Uinta, Mtas., UT	forest clearing	130±8	2.7±0.1	0.11±0.01	1	1	1	0.021±0.001	0.041±0.004	0.129
ı	S1714	Koab, UT	BLM area Spanish	150±5	3.0±0.1	0.03±0.01	1	1	i.	0.020±0.001	0.028±0.003	0,124
-			Valley							1.0	8	
2 .	S1717	Geyser Pass, UT	mountain meador	160±5	3.3±0.1	0.11±0.01	1	1	1 :	0.021±0.001	0.033±0.003	0.125
3	51722	Lasal, GS, UT	meadow	8949	2.3±0.1	0.09±0.01	1	1	1	0.02610.003	0.040±0.005	0.187
	9											
			•		une 1974 San				*			
				(Sam	pling depth	0-15 cm)			4			•
1	s1913	Tybo, W	grazing land	130±6	4.9±1.4	0.21±0.01	1	3	1	0.038±0.011	0.04340.012	0.091
		•	rountain meadow	150+4	9.7±1.9	0.39±0.16	1	4	2	0.065±0.012		
2	\$1912	Cherry Creek, NV						•				0.061
3 ·	51911 51910	Timber Htn., NV	sparsa veg. magebrush cover	87±4 100±2	3.8±0.5° 5.4±1.2	0.21±0.01 0.26±0.02	1	4	1	0.044±0.005 0.054±0.012	0.055±0.009 0.052±0.012	0.094 0.074
4	\$1909	Panaca, NV	grazing land	13015	4.5±2.0	0.25±0.02	1	4	1	0.03540,015	0.056±0.025	0.093
5	\$1908	St. George, UT	Mountain meadow	140±5	3.2±0.1	0.12±0.01	1	2	1	0.023±0.001	0.038±0.003	0.112
5	S1907	Panquitch, UT	grassed field	94±3	2,4±0,1	0.09±0.01	1	2	1		0.038±0.024	0, 135
,	\$1906	W. Milford, UT	west of Frisco	72±10	2.2±0.2	0.07±0.01	1	. 2	1	0.030±0.005		0.105
,	21308	w. Alliord, Cl	Pase .	,2110		0.0720.01		•	•		0.03210.003	. 0.105
В	51901	Baker, NV	Ranch pasture	82±5	9.0+0.4	0.31±0.07	1	4	2	0.11±0.01	0.034±0.009	0.081
1-4	\$1902	•	duplicate sampl.	8372	5.0±0.1	0.16±0.02	1	2	1 .	0.060±0.002	0.032±0.004	0.073
9	51900	ely, hv	City pastureland	120±2	5.4±0.5	0.21±0.02	1	2	1	0.04510.004	0.03950,005	0.093
•	51899	Eureka, SV	grazing land	12018	19.510.5	0.51±0.10	. 1	3	2	0.16±0.01	0.02510.005	0.063
L	51898	Elko, NV	grazing land	110±7	2.4±0.4	0.12±0.01	.1	2	1	0.022±0.004	0.05010.009	0.141
2	S1897	Wendover, NV	vest of salt flat	110±2	2.1±0.1	0.09±0.01	1	2	1	0.019±0.001	0.047±0.005	0.168
3	S1892	Vernon-Zureka, UT	mountain peadow	150 16	4.2±0.4	0.15±0.04	1	3	2	0.029+0.003		0.110
	S13 93	•	duplicate sampl.	140+3	4.5±1.6	0.1210.01	1	. 3	1	0.032+0.011	0.027÷0.010	0.122
i.	51891	Wales, UT	mountain meadow	130±5	3.7±1.1	0.14±0.01	1	3	1	0.023to.008	0.038+0.012	0.082
5	S1990	Vernal, UT	Peadow	77+5	1.710.3	0.07+0.01	1	2	1	0.022±0.904	0.04110.009	0.115
5	\$1998	Robertson, WY	meadow	14014	3.5±0.7	0.12±0.06	1	3	2 ,	0.025±0.005		0.103
	SISSO	•	Aspen grove	150±5	4.711.9	0.13:0.01	1	3	1	0.03140.013		0.097
•	\$1387	Cache H.F., UT	Tony Grove	230:4	4.310.1	G. 20+0.02	1	2	1	0.019+0.031	0.046+0.075	0.141
	\$1886	Twin Falls, ID		85±5	2.4±0.3	0.1310.01	2	4	1		0.054+0.008	0.103

with read citan emetral betactic (1). Thiere are tive sites Muere duplicate samples were taken. Table 3 shows the sampling reproducibility (the difference between pairs expressed as a percent of the mean) for the three isotopes and the Pu-240 to Pu-239 mass ratio. For Pu-239-240, the sampling reproducibility ranged from 7 to 57 percent whereas in previous studies a sampling reproducibility of 20 percent or less was usually encountered (7). The corresponding values for Cs-137 and the mass ratio Pu-240 to Pu-239 are less than 15 percent. The most plausible explanation for large analytical and sampling errors associated with the plutonium analyses is that the plutonium containing particles are not uniformly distributed and that in some samples relatively few particles contain the bulk of the plutonium activity. It would appear that we are dealing with the so-called "hot particle problem" which has plagued the EPA in their off-site plutonium in soil program (3). Obviously the much larger samples collected and analyzed in this work were still not adequate to entirely overcome this problem.

In analyzing soil containing plutonium from NTS activities, the possibility exists that some fraction of the plutonium can

TABLE 3. DUPLICATE SAMPLING

				Percent R	teproduci	bility
Map Site	Sampling Year	Site	Cs-137	Pu-239,240	Pu-238	Mass Ratio Pu-240 to Pu-239
3	1971	Salt Lake C., UT	12	12	6·	1 4
3	1974	Timber Mtn., NV	14	35	28	13
8	, 11	Baker, NV	1	57	64	10
13	u	Vernon-Eureka, UT	7	7 .	22	10
16	u .	Robertson, WY	7 .	29	8	6

not be extracted with acid. In this study there were ten pairs of data which could be used to compare acid extraction with complete dissolution (see Table B-1 in the Appendix). Using a two-sided T-test, $\alpha = 0.05$, which would indicate that at the 95 percent confidence level, acid extraction was as effective as complete dissolution in recovering plutonium. Individual pairs of data, however, show large variations which are only plausible if the "hot particle" explanation is invoked. Using the same statistical test we compared the acid extraction of 100 and 1000 gram aliquots and the complete dissolution of 10 and 100 gram aliquots (see Tables B-2 and B-3 in the Appendix). No difference between the sets of data in either case, at the 95 percent confidence level, was observed.

In addition to blind replicates, aliquots of pre-bomb (or blank) soil and reference soils were analyzed as indicators of analytical quality. No evidence of contamination during analyses was found. Tables C-1 through C-3 in the Appendix summarize the supporting data for this observation.

DISCUSSION

Although the emphasis in this work is on plutonium deposited northeast of the Nevada Test Site, the soils sampled were analyzed for the fission product Cs-137 to compare distributions. The

Cs-137 results in mci per km² are mapped in Figure 2 and show a random but fairly uniform deposition pattern. The highest values reflect high amounts of precipitation and the lowest values are from the drier areas. Although there is no obvious gradation from high to low deposits with increasing distance from the NTS, presumably some variable fraction of the total Cs-137 measured originated from nuclear tests in Nevada. The Pu-239,240 to Cs-137 ratio for soils containing only global fallout is 0.016±0.003 (10). Table 2 shows that this ratio is higher in almost all cases indicating the presence of plutonium from a source other than global fallout.

The total (measured) deposit of Pu-239,240 mapped in Figure 3 does not show a clear pattern of decreasing levels with distance from NTS. From a deposit of 1.7 mCi per km² at Vernal, UT to 19.5 mCi per km² at Eureka, NV, these values range from about equal to five times the levels measured elsewhere in the conterminous United States (11).

By using mass spectrometry, we were able to determine the plutonium isotopic composition of these integrated fallout samples. The ratio of Pu-240 to Pu-239 is given for each site in Table 2. The mass isotopic composition of global fallout plutonium in soil has been determined from analysis of 65 soil samples collected throughout the world during 1970-1971 (12). The global mean atom

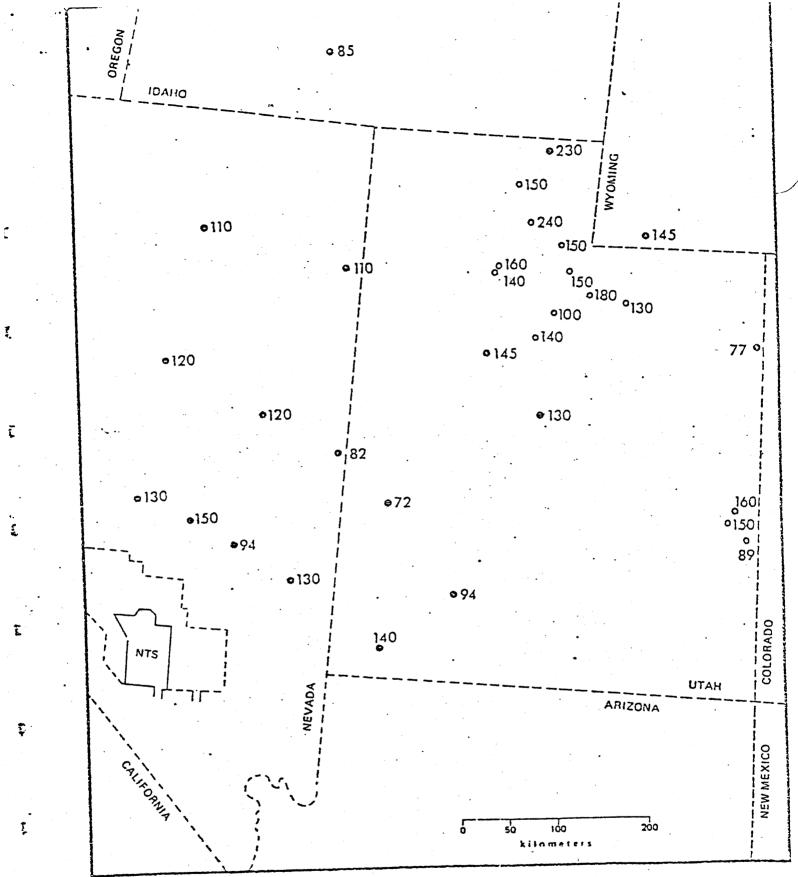


FIG. 2 CUMULATIVE TOTAL DEPOSIT OF Cs-137 (mCi per km²)

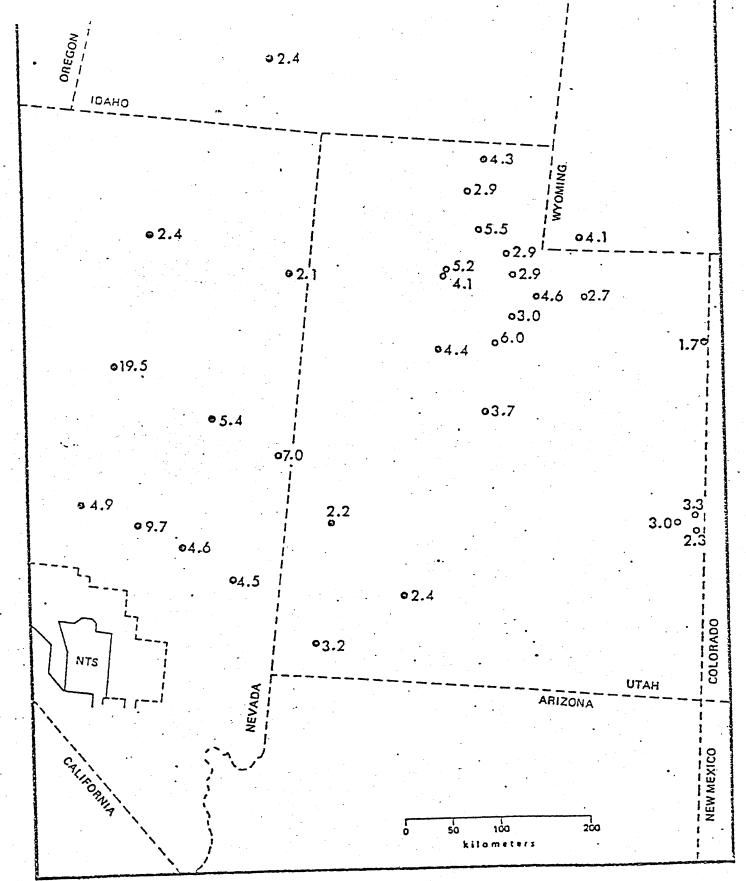


FIG. 3 CUMULATIVE TOTAL DEPOSIT OF Pu-239,240 (mCi per km²)

that by mass spectrometric analysis, it is possible to differentiate between global fallout plutonium and plutonium from another source (13.14). It is obvious from the last column in Table 2 that most of the soil samples contain plutonium from a second source. If the mass isotopic composition of plutonium from two sources is sufficiently different, a mixture of these sources can be resolved by applying the following equation (12).

$$\frac{\text{(Pu activity)}_{1}}{\text{(Pu activity)}_{2}} = \frac{\text{(R}_{2}-\text{R})}{\text{(R}-\text{R}_{1})} = \frac{\text{(1+3.6 R}_{1})}{\text{(1+3.6 R}_{2})}$$

where R is the Pu-240 to Pu-239 atom ratio of the mixture and R_1 and R_2 the ratios for source 1 and 2, respectively. We used a Pu-240 to Pu-239 value for NTS of 0.05 \pm 0.01 (12) and for global fallout, 0.18 \pm 0.01 (12). Based on this relationship it is straightforward to calculate the global and the excess plutonium deposit for each site. These values are given in Table 4. The last column of this table shows the percent of the total (measured) deposit of plutonium that is attributed to the NTS. All but two of the sites show the presence of NTS plutonium.

The deposition values for global fallout Pu-239,240 are mapped in Fig. 4 and show a random, rather homogeneous pattern with higher value

TABLE 4 COMPONENTS OF PLUTONIUM FALLOUT IN SOIL (Determined from the Mass Ratio: Pu-240 to Pu-239)

1971 Samples

Kap Site No.	Location	BCi Pu-239,240 per km² Global Excess	% of Total Attributed to NTS
1	Provo, UT	1,2±0.7 4.8±0.8	80±14
2	Salt Lake C., UT	1.5±0.4 2.6±0.4	63±10
3	Salt Lake C., UT	1.7±0.5 3.5±0.6	67±12
4	Ogden, UT	3.3±0.3 2.2±0.3	40±5
5	Brigham, UT	2.1±0.2 0.8±0.4	27±14
6	Reber, UT	1.4±0.3 1.5±0.3	52±10
?	Marion, UT	2.1±0.4 2.5±0.4	52±9
8 .	Wanship, UT	2,0±0,2 0,9±0,2	32±6
9 "	Henefer, UT	2.0±0.2 0.9±0.2	30±6
10	Vinta, Htns., UT	1.8±0.1 0.9±0.1	32±6
11	Moab, UT	2.0±0.1 1.1±0.1	34±5
12	Geyser Pass, UT	2.2±0.1 1.1±0.2	33±5
13	Lasal, G.S., UT	2.3±0.1 0.0	0
•			
•		1974 Samples	•
1	Tybo, NV	2.0±0.7 2.9±1.6	60±37
2	Cherry Creek, NV	1,1±0,5 8.6±2.0	89±27
3	Timber Mtn., NV	1.0±0.4 2.8±0.6	75±19
	duplicate sampl.	1.9±0.5 3.6±1.3	· 67±28
4	Panaca, NV	1.5±0,7 3.0±2.1	67±55
5	St. George, UT	1.8±0.2 1.4±0.2	. 44±6
6	· Panguitch, UT	1.7±0.1 0.7±0.2	31±7
7	W. Milford, UT	1.1±0.1 1.1±0.2	49±12
8	Baker, NV	2.7±0.8 6.3±0.8	70±10
•	duplicate sampl.	1.2±0.3 3.8±0.3	76±6
9	Ely, NV	. 1.7±0.3 3.7±0.6	. 68±13
10	Euroka, NV	2.8±1.0 15.7±1.1	86±6
11	Elko, EV	1.8±0.3 0.6±0.5	· 24±22
12	Wendover, NV	1.9±0.1 0.2±0.2	8±8
13	Vernon-Eureka, UT duplicate sampling	2.3±0.3 1.9±0.5 2.8±1.0 1.7±1.9	45±12 37±44
14	Wales, UT	1.2±0.4 2.5±1.2	69±38
15	Vermal, UT	1.0±0.2 0.7±0.4	43±22
16 .	Robertson, WY	1.7±0.5 1.8±0.6	52±20
, -	duplicate sampl.	2.1±1.0 2.6±2.1	54±50
17	Cache H.F., UT	3.3±0.2 1.0±0.2	24±5
18	Twin Falls, ID	1.140.3 1.3±0.4	52±18

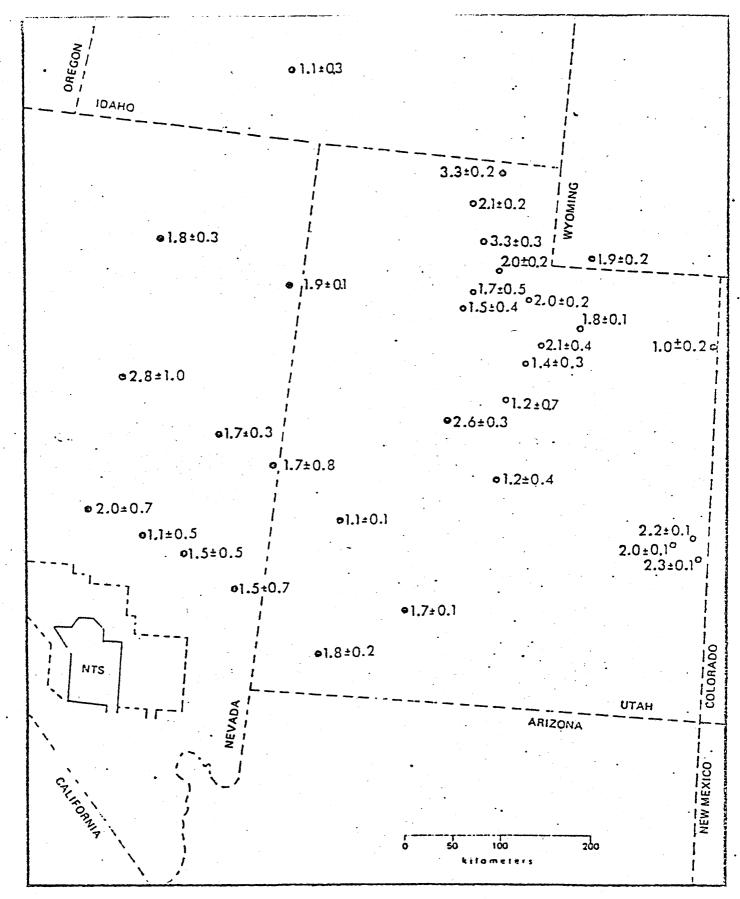


FIG. 4 CUMULATIVE GLOBAL FALLOUT DEPOSIT OF Pu-239,240 (mCi per km²)

again reflecting nigher amounts of faintail. The factor of the Cs-137 values to these calculated global failout Pu-239,240 values average 0.014±0.005 which is in good agreement with the ratio observed in soils containing only global failout (10). This means that the measured Cs-137 deposits and the calculated global failout Pu-239,240 deposits for these sites reflect debris originating from the stratosphere, within the limits of error imposed upon these values.

Perhaps the most convincing evidence we have that the excess or second source of plutonium is from NTS safety tests and other detonations which resulted in incomplete fission, is the radiochemical and mass isotope spectrometric data we have on a series of soil samples collected at the University of Utah from 1959 through 1971. Table 5 presents these data as well as data for three soils from Cedar City, UT from 1963 through 1965. The mass ratio of Pu-240 to Pu-239 at the University site is 0.050 in 1959 and increases to 0.084 in 1971. This indicates that the second source of plutonium was deposited prior to 1959 and the increase in the ratio reflects dilution of this debris with global plutonium fallout. Since all of the safety tests at NTS were conducted before 1959, it seems reasonable to attribute a substantial portion of the excess plutonium to this source. The Cedar City data show that the NTS contribution to the total measured plutonium deposit is much less in this area compared to the Salt Lake City area.

TABLE 5. CHRONOLOGY OF PLUTONIUM DEPOSITION

Year	Total Pu-239,240 (mCi/km ²)	Ratio Pu-240 Pu-239	Mass Spec. Lab.	Global Fallout Pu-239,240 (mCi/km²)	Excess Pu-239,240 from NTS (mCi/km²)	% of Total Fallout Pu from NTS
			Universi	ty of Utah		•
1971	5.2	0.084	KAPL	1,7	3,6	69
1965	4,7	0.082	LLL	1.4	3.3	70
1964	4.9	0.079	LLL	1.4	3.5	71
1963	4.5	0.060	KAPL	0.5	4.0	89 '
1962	4.2	0.058	KAPL	0.4	3.8	90
1960	3.8	0.051	KAPL	<0.4	3.4	~ >90
1959	4.2	0.050	LLL	<0.4	3.8	>90
			Cedar (City, Utah		
1965	1.4	0.141	LLL	1.1	0.3	21
1964	1.5	0.132	KAPL	1.1	0.4	27 .
1963	1.4	0.121	KAPL	0.9	0.5	36

pattern from NTS. Considering the errors associated with these data, we attempted to draw isopleths to show the dispersion pattern. The 2 mCi per km2 isopleth was the lower limit but it is obvious that a much wider area has received plutonium fallout from NTS at levels less than 2 mCi per km3. The soil sampling that has been carried out to date does not encompass a large enough area and is not sufficiently dense to provide a reliable value for the total amount of plutonium released from the NTS. Furthermore, it is clear that the dispersion pattern is more complex than we are able to show. Apparently each individual detonation produced a separate downwind deposition pattern and the composite picture contains small area highs and lows that can not be defined by the data available here. Within the isopleths that we have drawn, however; we estimate by contouring that 700 curies of Pu-239-240 from NTS have deposited northeast of the test site as far as the Salt Lake City area. By comparison the global fallout Pu-239,240 within the same area amounts to about 250 curies.

Twelve of the twenty-six safety tests had wind trajectories that followed a northeast pattern from NTS. The wind trajectories for the remaining fourteen detonations overlap the other three segments of the compass. Our coverage, therefore, from an inventory

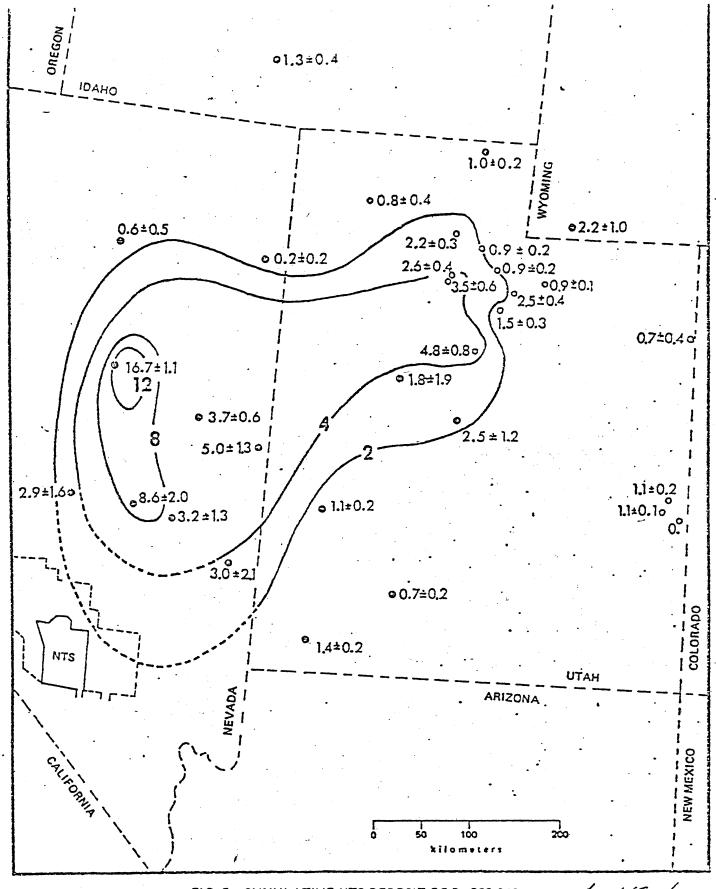


FIG. 5 CUMULATIVE NTS DEPOSIT OF Pu-239,240 (mCi per km²)

As of 1974

a smoothly decreasing pattern with distance from NTS. The twelve safety tests which had wind trajectories northeast of the NTS apparently created distinctly different deposition patterns. Within the 2 mCi par km² isopleth which extends northeast as far as the Salt Lake City area, about 700 curies of NTS Pu-239,240 has deposited as compared to about 250 curies of global fallout Pu-239,240. The sampling coverage and density, however, are inadequate to show the apparently broader extent of off-site plutonium contamination from NTS.

ACKNOWLEDGEMENTS

The support and effort of the following groups and individuals were indispensable in carrying out this study:

The sampling areas were selected based on wind trajectories prepared for each event by Kosta Telegadas of the Air Resources Laboratories, National Oceanic and Atmospheric Administration, Silver Spring, MD.

Mr. Kermit Larson of the Forest Service in Ogden, UT and Dr. Theron Hutchings of the Soil Conservation Service in Salt Lake City provided the names of field personnel who designated suitable sampling areas.

The sampling phase was carried out with the field assistance and advice of Frank Jakubowski and Harold Peer of the Environmental Protection Agency, National Environmental Research Center, Las Vegas. Mr. Wayne Bliss, head of the off-site monitoring operations at EPA-LV, provided the field support and guidance,

standprint is very limited. We know, for example, that the soil we sampled at Burbank, CA in 1970 includes some plutonium from NTS because the Pu-240 to Pu-239 mass ratio was 0.144 compared with the average of 0.176±0.014 for global fallout (12). The total Pu-239,240 deposit was only 0.7 mCi per km² so the NTS contribution is considerably less at this site than in the Salt Lake City area, by comparison.

CONCLUSIONS

Integrated plutonium fallout levels as measured in soil samples taken northeast of the Nevada Test Site in 1971 and 1974 are in most cases several times higher than expected from global fallout.

Mass spectrometric analysis of the radiochemically separated plutonium fractions demonstrates the presence of a second source of plutonium. A sequence of soil samples collected from 1959 to 1971 at the University of Utah indicate that this second source of plutonium fallout was the safety tests and other detonations where little or no fissioning occurred, which were carried out from 1956 through 1958 at the NTS. Resolution of the plutonium fallout levels into global and NTS source components leads to a reasonably uniform global fallout pattern as far north as Twin Falls, ID and as far east as Vernal, UT. Twenty-nine of the thirty-one sites sampled

Mass Spectrometric analyses were performed at Knolls
Atomic Power Laboratory under the direction of Leonard Dietz
and Frank Rourke (Mass Spectrometry Programs), at Lawrence
Livermore Laboratory by Jene Dupzyk and Riley Carver.
(Radiochemistry Division) and at McClellan Central Laboratory
under the direction of Col. William Meyers.

The analyses at HASL were carried out by N.Y. Chu, J. Feldstein and C. Sanderson.

- 1. Hardy, E. P., H. L. Volchok, and P. W. Krey Strontium-90 Fallout in Utah USAEC Report HASL-257, pp. I-71 to I-94, July (1972)
- 2. Hardy, E. P., P. W. Krey, and H. L. Volchok Plutonium Fallout in Utah USAEC Report HASL-257, pp. I-95 to I-118, July (1972)
- 3. National Oceanic and Atmospheric Administration Climates of the States, Vol. II Water Information Center, Inc., Port Washington, N. Y. (1974)
 - 4. Harley, J. H. (Editor)

 HASL Procedures Manual

 USAEC Report HASL-300, pp. B-05-05 (a)

 B-05-06 (b)

 B-05-10 (c)

 B-04-01 (d)
- 5. Telegadas, K.
 Air Resources Laboratories, NOAA
 Private communication, May 7, 1973

3.

- 6. Chu, N. Y.

 Plutonium Determination in Soil by Leaching and Ion Exchange
 Separation
 Anal. Chem., 43, 449 (1971)
- 7. Hardy, E. P., and P. Krey

 Determining the Accumulated Deposit of Radionuclides by

 Soil Sampling and Analysis

 Los Alamos Scientific Laboratory Report LA-4756, Dec. (1971)
- 8. Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations U. S. Environmental Protection Agency, Annual Report NERC-LV-539-31, May (1974)

- Depth Distributions of Global Fallout Sr-90, Cs-137, and Pu-239-240 in Sandy Loam Soil USAEC Report HASL-296, pp. I-2 to I-10, October (1974)
- 10. Hardy, E. P. Regional Uniformity of Cumulative Radionuclide Fallout
 USAEC Report HASL-288, pp. I-2 to I-9, Jan. (1975)
- 11. Hardy, E. P., P. W. Krey, and H. L. Volchok Global Inventory and Distribution of Fallout Plutonium Nature, 241, 5390, pp. 444-445, Feb. (1973)
- 12. Krey, P. W., E. P. Hardy, C. Pachuki, F. Rourke, J. Coluzza, and W. K. Benson
 Mass Isotopic Composition of Global Fallout Plutonium in Soil
 IAEA Int'l Symp. on Transuranium Nuclides in the Environment, San Francisco, Nov. 17-21, (1975), published Vienna 1976
 ST. 1/PUB/410
- 13. Krey, P. W., and B. T. Krajewski
 Plutonium Isotopic Ratios at Rocky Flats
 USAEC Report HASL-257, p. I-95, July (1972)
- 14. Krey, P. W. Remote Plutonium Contamination and Total Inventories from Rocky Flats Health Physics, 30, No. 2, pp. 209-214, Feb. (1976)

APPENDIX

TABLE A BASIC DATA FOR SHIE SAMPLES CULLECTED FOR PURFORIUM FROM KIS

•					to. Cures	Total Area	fotal Air									_	Hass T	101000		Mass
‰p Site	KASL Zo.	Site	tampt*s	(c=)	Cuts	Sampled (cm ²)	Primiut.	Anal. Leb.	Grame Anal.	X-ch~l		Par 19-16U		C1-137	Pa-239,240	Pu-:14	2:40	21-1 274	234	Spec. Lab.
																				
1	51715	fravo, CT	4-15-/1	0-10	10	620	29.3	HASE 1PA	254 1000	G-Li leid Kree.	0.6726	12450.0	0.00047 <u>+</u> 6	140	5.8	0.14	0.027	.0026		LLL.
•								WE	100	Complete Sol'n.		0.030-4	0.000		. 6.3	0.14	V.V.1			- 4-4-4
			4 10 22			440	• • •		***	• _		•								
2	\$1713	Salt Lake City. FT	6-1A-71	Q-30	10	620	21.0	HASL (PA	1000	Ge-Li Acid Extr.	0.92 <u>+</u> 6	0.02723	0.0007525	140	4.1	0.11	.035	.0033	.0017	EAPL
3	\$1711	Valv. of	6-17-71	0-30	10	620	25.6	MASL	276	Ce-LL	0.9244		•	170	100					
•	-	Beah. UT			•		- *	17A LFE	1000 2000	Acid Extr.	•	0.021 <u>±</u> 1	0.00091±6		5.2 4.6	0.17	.081	.0029	.0015	KAPL.
	41213	Deplicate	4-17-72	9+30	10	670	25.8	MASL	268	Ga-LI	0.5125	•	•	150		•	*****			•
		Sampling					*	IPA LFE	1000	Actd Extr. Complete Sal's.		0.025±3 0.031±2	0.0003456		5.3 5.8	0.16	.085	.0030	.0015	RAPL
			4-18-71	o* 10	10	620	33.0		364	Sal'n. Ca-Li	1.013	0.03		***	3.0			•		
•	\$1712	Ogden, CT	4-10-11	0-10	10	410	33.0	Pasl LPA	1030	Acid Exer.	1.00	0.023±1	0.0008324	240	3-3	0.20	.117	.0046	•	LLL
5	51709	Brighen,	5-13-71	0-30	10	620	24.3	HASL	344	Ge-LL	0.8425	• ,		150			•			
		UT.						LPA	1000	Acid Extr.		0.017-10	0.00077±4		2.9	0.14	.135	.0052	.0025	Kapl
6	\$1721	Reber, CT	6-15-71	0-30	10	620	22.5	Kasi IPA	316 1000	G4-L1 Aeid Exes.	0.5426	0.019±3	0.00054 <u>+</u> 6	100	3.0	6.09	.099	.0034	.6920	ELPL.
,	47716	Marian, '-	- 6-16-71	9-30	10	629	24.1	KASL	294	Ge-Li	1.02*4			180						
. •		ur			• • • · · · · · · · · · · · · · · · · ·			IPA	1000	Acid Late.		0.02641	0.00038±4		4.5	0.13	.101	.0038	.5022	KAPL
	\$1719	Venship.	6-16-71	0-30	10	620	31.4	ZASL	352	Ga-LI	0.67 <u>+6</u> .			150						
		ut			•	***		IPA	1000	Acid Extr.		0.01321	0.0005125		2.9	0.12	.127	.0049	.6023	EAPL
•	\$1770	Henefor, UT	6-17-71	0~10	10	620	22.5	Kasl LPA	318 1000	Ge-Ll Azid Extr.	0.94 <u>+</u> 3	0.013 <u>+</u> t	0.G0072 <u>+</u> 4	150	2.9	0.12	.132	.0054	.0029	IA25
10	\$1710	Ginea Mens,	6-14-71	0-30	10	620	16.5	HASL	267	Ge-L1	1.05±6			130						
		UI						174	1000	Acid Extr.		0.022±1	وجرد 6000،0		2.7	0.11	.128	0048	.6027	KAPL.
11	\$1716	Hoad-SLM,	6-14-71	0-30	1	930	30.8	RASL LPA	353 1200	Ge-Li Acid Exer.	1.0123	0.020 <u>±</u> t	0.00056±6	150	3.0	0.03	.124	.0044	.0027	F1 Df
12	41717	Kanti-	6-14-71	0-10	10	620	21.3	KISL	294	Ge-Li	1.04±3			160		V.V.	••••			
••	31717	Lessi-	0-14-71	4-34	,0	425		IFA	1000	Acid Extr.	1.0453	0.021±1	0.60073±6	100	3.3	0.11	.125	.0345	.0027	KAPL
		Geyser P.										•			• • •		:	. •	. •	
13	\$1722	Kasi- Lasal-	6-14-71	0-30	10	420	23.0	rasl IPA	314 1000	Ge-Li Acid Exer.	0.34±10	0.014±1	0.0005625	89	2.3	9.09	.187	.0369	.001j	KLPL.
		Guard S.									1.									
1	51913	Tybe, SV	6-4-74	0-13	3	475	13.3	RASL	379	Ge-L1	1.4425			130						
•				•				Kajl Lie	1000	Acid Izer.		0.041±9	0.002424	•	3.4 4.7	0.21	.691	.0035	0013	V 1.00
2	<1913	Cherry	6-4-75	0-15	3	675	17.0	üe Kul	100	Compl. Soi'm Comili	1.32 <u>+</u> 3	8:8%部		150	4:3		••••		:	
•	31,714	Creek, EV	0		•			MASE LIE	100	Acid Excr.		0.101±7 0.095±3	0.0021±6		11.4					
				•				LIZ	100	Compl. Sol'	a.	0.042+4	0.0044±15		10.8	0.28 0.50	0.001	.0012	.uota	KAPL
_				• •			•	rasl	10			6.0525			9.4		*			•
	\$1911	Timber Hen.	8-4-75	0-13		1000	9.7*	Kisl Kisl	348 100	Ga-Li Acid Extr.	1.985	0.36929		87	15.1					•
					(* Rocks	Iconoved)		LFE RASL	1000	: :		0.096 <u>)</u> 0.041 <u>+</u> 6	0.004825		4.2 3.5	0.21	.074	.0026	1100.	KAPL
•	51910	Duplicate	6-4-73	0-15	· 1	1000	12.20	NISL	332	Ge-Li ·	1.8322			100						
		Sampling			• .			easl LPE	100	Acid Extr.		0.05A±7 0.10(±)	d.0030±5	•	3.4	0.28	.034	.0037	.6317	T127
					A torks	Lamoved)		KASL LIE	100	u m Cumpi. Sol'	_	0.107+5			3.9 6.3			,		
	51500	Panaca, WY	4.4.79	0-75	,	675	15.2	NASL			1.254	0.110_3	•	130	•.,	•		•		* . *
	31731		4-3-13	4-13	•	•••	13,4	KLIL	344 100	Ge-Li Acid Extr.	1.40	0.03029			3.1					
			•			•		LTE KLSL	1000			0.07423	0.002527		7.5 3.2	0.25	.543	Hen.	.0037	rvsr
					_		• •	ur	100	Compl. Soi'		0.0:22)			4.3				٠	
. 5	51908	St. George, UT	4-5-74	0-15	2	100	14.5	Kyzp	369 100	Ce-Li Acid Extr.	1.5924	0.03823		140	3.1					•
								LFE	1003	• •			0.031326		3.7	0.12	.117	.0043	.0019	eaps.
4	\$1307	Pontulich, UT	6-1-74	0-15	10	420	12.5	KASL	255 169	Ga-Li Acid Exer.	1.012	0.028 <u>+</u> 9		94	2.5	-				
								LFE	1000	~			0.0009214		2.4	0.09	.130	•	•	LACE
						•														_

TABLE A

AASIC DATA FOR SOIL SAMPLES CULLECTED FOR PUTURITY FROM STS (Cume*4)

	•				Cores	local Ares	Total								_		7399 1	10:00-	*2510
Kap Site	MASE No.	Sice	Siepl's	Depch (cm)	Get a	Sampled (and)	Ortel ut.	, ادمۂ (جاء)	Geans Anala	Rethod	200 per	1) ce 4ry en(1	2-177	Ca-11/	Pu-211,250		21)	234	233
,,,,	30.	2164	14364	(52)	(.55)	(434-)	(4.5)	194.		114611-10	CX-177	M-237U	Files	(3-(1/	PU-237,240	10-572	737	117	237
3	\$1706		6-4-14	0-13	2	800	14.6	ielse.	371	G61	0.43214			72	•				
		AL.						المدا	100	Acid Eyer.		0.02523			3.1				
. •								LFE	1000			0.02923	0.0009210		2.4	0.07	.106	.0017	.302
	\$1201	Bater, N7	4-4-74	0-15	10	620	12.4	HATE	300	Co-Li	0.8927			12					
	• • • • • •							KASL	LOG	deid Excr.		0.1026			9.5				
								LYE	1000		•	0.09123	0.0728510		1.5	0.26	.081	.6335	.ಜಾ
		•						UTE BASE	100	Compl. Sol's	L	0.097 <u>±3</u> 9.093 <u>±</u> 7	0.073+±16	•	9.0	0.36			
					-			E-G-C	10		*	0.07327			7.1				
•	\$1902	Duplicate	6-6-75	0-15.	10	620	13.1	MASL	296	Ca-Li	0.3753			. #3		•			
		Sampling					1.	WASL	100	Azid Extr.	1	0.032510			3.0				
		1.5				4.		FLE	Inno			· 0.05.25	0.0017210		4.9	0.16	.073	.0027	.6012
														•					
,	\$1900	Ely, XV	6-7-74	0-15	10	\$20	11.5	rasl rasl	247 160	Ge-Li Acid Extr.	1.3427	0.07C±3		120	3.8				•
								LIE	1000			0.0614	0.002549		3.1	0.21	.083	.0033	.2012
	•									•		-	Ξ.						
10	\$1879	Euteka, NV	6-7-74	0-15	3	475	13.7	KASZ	347	Go-El	1.30±7			120	•• •				
								HAS L LFE	100	Acid Exit.		0.205 19 0.215 <u>1</u> 2	0.004624		19.0 19.6	0.44	.063	.0025	.0005
								LFE	100	Compl. Sol'n		0.219±3	0.0054212		29.0	0.58			
										· . •			-						
11	11393	Elka, KV	6-8-74	0-15	lo	620	13.6	KUSL	259	Ge-LI	1.1246			110					
			5			• '		Kasi.	100 _	ield Exer.	•	0.02125	0.031225		. 2.1 2.7	0.12	.141	.0055	.0030
		•				•							***********						
12	51397	Wendaver,	6-8-74	9-15	2	800	15.4	Hisl	367	Ce-CE	1.252			110			1.1	1	
		UT ·	. *		_			ELSE	100 1009	Arid Exer.		0.07548			2.2				
							1 - 1 - 1 - 1	LFZ	1007			0.01723	0.001029		2.0	0.03	.168	•	•
13	51392	Vernen-	6-9-74	9-15	10	620	17.1	KASL	277	Ce-LL "	1.6744		*	150			•		1.0
•••	•	Zureka, UT		•			•	RASL	100	Acid Exer.	_	0.043+10			3.5			-	
			•	5 4		•	•	LFE	1000	Compl Sol'n		0.047 <u>+</u> 3 0.052 <u>+</u> 4	0.001429		4.1	0.17 0.13	.110	.2037	.0023
		÷						276	100	CON: PC 301 II	•	0.032	4.0054_54		4.0	0.13			
	51893	Ouplicate	5-9-76	0-15	10	620	13.2	HASL	279	Ge-Li	1.47+2			140				•	•
		Sampling			•			MASL	100	Acid Extr.	* .	6.067±10			6.4				
						•		LTE BASL	1000			0.03313	G.CO1229		3.6 3.6	0.12	.122	.5022	.0025
						. •			••••						, , , , ,	•		• '	
14	51391	Wales, UT	6-9-74	0-15	2	800	8.2	HASL	239	C4-LE	2.73±4			130			•		
								KASL	100	Acid Exer.		0.072±10			4.3				
								KYZT	1000	Crapt Sol's		0.873 <u>±</u> 4 0.851±17	0.0029±5		4.3 2.4	0.14	.082	.0029	.0017
									••	C 27 C 30 C 1	•	0.03@17			2.4				
15	\$1890	Vermal, UT	6-10-74	0-15	10	. 620	14.9	RASL	364	Ge-Li	0.71_6		•	77					
		•						EASL	100 1000	Acid fatt.		0.014±11			1.3				
				٠.	• ,			UE	1000			0.0(223	0.0004-12		1.9	0.07	.116	.0041	.0022
15	11885	lobertson,	6-11-74	0-15	10	620	12.0	KUSL	314	Ce-LL	1.4123			140					
		A.C.						HASL	100	Acid Extr.		0.03(±13			2.7				
							•	LFE	1000	Compl. Sol's			0.0009914		3.7	0.03	.103	.6037	.0020
										COMPL 301 2	•	0.045±4	0.0019214		4.0	0.16			
•	51889	Duplicate	6-11-74	0-15	10	620	12.4	Kasl	239	Ge-L1	1.70±3		•	150		•			
		Sapling			•			MSL	100	held late.		11±110.0			2.8			-	
			. :					LFE Hasl	fcco			0.05(±) 0.073±5	0.004428		4.6	0.13	.097	SCCO.	.0015
			•		• •					•						•			-1
17	51287	Cache SF,	6-11-74	0-15	10	620	11.0	HASL	271	Ga-LI	2.8222			230 -		. • •			- 5
		धर	•	•				iusi. Lte	100	Acid Exer.	•	0.053510			4.2				
							· · · · · ·	LIE	1000	- -		0.05524	0.002449		4.4	9.29	.141	.5053	.0027
18	\$1856	Twin Falls,	6-12-74	0-15	10	620	10.4	KASL	262	Ge-L1	1.1523			11	•				
		10			-		•	KASC	268	•	1.6326			42			•		
		•		• ·			•	MASE	100	Acid Extr.		0.034112			2.5				
		•						Kasl Lee	100	: :	•	0.027±7 0.035±3	0.001723		2.0 2.3			0044	
				•				RASL	100			0.03224	2.001723		2.4	0.13	.193	.0067	.0021
		•						•											

TABLE B-1. COMPARISON BETWEEN ACID EXTRACTION AND COMPLETE DISSOLUTION IN SOIL Pu ANALYSIS

**		mCi Pu-23	39,240 per km²	No. o	f Analyses
HASL No.	Site	Acid Extr.	Complete Sol'n.	Acid Extr.	Complete Sol'n
S1713	Univ. of UT	5,3±0.2	5.8±0.1	1	1
S1913	Tybo, NV	4.2±0.8	6.3±0.2	2	3.
S1912	Cherry Creek, NV	11.1±0.4	8.2±1.6	2	2
S1910	Timber Mtn., NV	5.1±1.1	6.5±0.2	3),
s1909	Panaca, NV	4.6±2.5	4.3±0.1	3	3.
S1901	Baker, NV	9.0±0.7	9,0±0,1	2	2
S1899	Eureka, NV	19.3±0.3	20.0±0.6	2	1.
S1892	Vernon-Eureka, UT	4.0±0.1	4.6±0.2	2	1.
S1891	Wales, UT	4.3±0.1	2.4±0.4	2	1
S1.888	Robertson, WY	3.2±0.7	4.0±0.2	2	1

	`\	mCi Pu-2	39,240	No.	of
		per k	m ²	Anal	yses
HASL No.	Site	. 100 g	1000 g	100 g	1000 g
			•		
S1913	Tybo, NV	3.6±0.3	4.7±0.1	1	. 1
S1912	Cherry Creek, NV	11.4±0.8	10.8±0.3	1	1
S1911	Timber Mtn., NV	3.5±0.2*	4.2±0.1	1	1
S1910	ti II ft	4.8±1.5	5.6±0.2	2.	1
S1909	Panaca, NV	3.1±0.1	7.5±0.2	2	1
S1908	St. George, UT	3.1±0.2	3.3±0.2	1	1
S1907	Panguitch, UT	2.5±0.2	2.4±0.1	1	1
S1906	W. Milford, UT	2.1±0.2	2.4±0.1	1	1
S1901	Baker, NV	9.5±0.6	8.5±0.4	1	1
S1902	11	5.0±0.5	4.9±0.2	1	1
S1900	Ely, NV	5.8±0.5	5.1±0.2	1	1
S1899	Eureka, NV	19.0±1.7	19.6±0.4	. 1	1
S 1898	Elko, NV	2.1±0.2	2.7±0.1		1
S1897	Wendover, NV	2.2±0.2	2.0±0.1	1	· 1
S1892	Vernon-Eureka, UT	3.9±0.4	4.1±0.1	1	. 1
S1893	15 16 84	6.4±0.6	3.6±0.1	1	1
S1891	Wales, UT	4.3±0.4	4.3±0.2		1
" S1890	Vernal, UT	1.5±0.2	1.9±0.1	1	1 .
S1888	Robertson, WY	2.7±0.4	3.7±0.1	1	1
S1889	11	2.8±0.3	4.6±0.1	1	ı
S 1887	Cache N.F., UT	4.2±0.4	4.4±0.2	1	1
S1886	Twin Falls, ID	2.3±0.3	2.7±0.1	. 3	1
			•		

^{*}Excluded 16.1 mCi/km² value.

TABLE B-3. COMPARISON BETWEEN COMPLETE DISSOLUTION OF 10 AND 100 g ALIQUOTS IN SOIL PU ANALYSIS

		•		•	mCi Pu- per	239,24 ·
HASL No.		Si	te		10 g	100 c
51912	C	herry C	reek, NV		9.4±0.8	7.1±0.3
S1901	B	aker, N	y		9.1±0.6	9.0±0.3
S1903		es · 11	•		7.4±0.5	6.5±0.2

(Each value represents a single analysis.)

TABLE C-1. ANALYTICAL QUALITY CONTROL ASSOCIATED WITH ANALYSES OF SOILS

lig. wt.			dpm Pu-239,240
(g)	್ಡ್.	Method	per q
100	HASL	Acid extr.	0.0002±100
100	. 11	19 12	0.0001±100
1000	LFE	10 10	0.0004±14%
Avg	. of previ	ous data .	0.0002±100
	. of previ	ous data	
	. of previ Lab.	ous data Method	0.0002±100 dpm Cs-137 per q
liq. wt. (g)	Lab.	Method	dpm Cs-137 per q
liq. wt. (q) 300	Lab.	Method Ge-Li	dpm Cs-137 per q 0.02±100%
liq. wt. (g) 300 315	Lab. HASL	Method Ge-Li	dpm Cs-137 per q 0.02±100% 0.01±100%
liq. wt. (q) 300	Lab.	Method Ge-Li	dpm Cs-137 per q 0.02±100%

Brookhaven, NY Reference Soil, No. S1815 Sampled Nov. 1972, 0-30 cm Composite

Aliq. wt. (g)	Lab.	Method	dpm Pu-239,240 per g	mCi Pu-239,240 per km ²	Mass Ratio Pu-240 Pu-239
100	HASL	Acid extr.	0.011±10%	2.2	
100 .	41	u · u	0.012±9%	2.3	
1000	LFE	11 80	0.011±4%	2.2	0.178
Avg. of previ	ious data		0.012±10%	2.3	
			÷ .		· .
			dpm	mCi	
Aliq. wt.					
	Lab	Method	d pm	mCi	
Aliq. wt.	•		dpm Cs-137 per g	mCi Cs-l37	
Aliq. wt.	Lab	Method	dpm Cs-137	mCi Cs-137 per km ²	

TABLE C-3. ANALYTICAL QUALITY CONTROL ASSOCIATED WITH ANALYSES OF SOILS

N. Eastham, MA. Reference Soil, No. S1781* Sampled Oct. 1972, 0-30 cm Composite

Aliq. wt.	Lab.	Method	dpm Pu-239,240 per g	mCi Pu-239,240 per km²	Mass Ratio Pu-240 Pu-239
100	HASL	Acid extr.	•	2.2	
100	LFE	16 17	0.013±10% 0.014±3%	2.3 2.4	0.176
Avg. of pr	evious d	data	0.013±10%	2.3	
Alig. wt. (g)	Lab.	Method.	dpm Cs-137 per g	mCi Cs-137 per km²	•
384 395	HASL "	Ge-Li	0.72±5% 0.75±3%	130 130	

^{*}Aliquots taken from original 3 kg that were pulverized in 1972.